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SUMMARY 

The saturated  equilibrium expansion approximation for two-phase flow 
often  involves  ideal-gas and latent-heat assumptions to  simplify  the  solu- 
tion procedure. Th i s  approach is well documented by Wegener  and  Mack  and  works 
best  at low pressures approaching the triple  point,  for which deviations from 
ideal-gas behavior are small. A thermodynamic expression  for  liquid mass frac- 
tion  that is decoupled from the  equations of f l u i d  mechanics is used i n  t h i s  
paper to compare the  effects of the  various assumptions on nitrogen-gas  satu- 
rated  equilibrium expansion flow start ing  at  8.81 atm, 2.99 atm,  and 0.45 atm, 
which are  conditions  representative of transonic  cryogenic wind tunnels. For 
the  highest-pressure  case,  the  entire  set of ideal-gas and latent-heat assump- 
tions  are shown to be i n  error by 62 percent  for  the  values of heat  capacity 
and latent  heat used i n  t h i s  paper. T h i s  error appears to be chiefly  the 
result of the  inaccuracy of the  ideal-gas  expression  for approximating entropy 
i n  nitrogen gas. An approximation of the  exact,  real-gas  expression is also 
developed by u s i n g  a  constant, two-phase isentropic expansion coefficient 
which results i n  an error of only 2 percent  for  the  high-pressure  case. 

INTRODUCTION 

When condensation  occurs i n  a wind tunnel,  the  resulting two-phase flow 
w i l l  usually  cease  to  simulate  the flow of  an ideal diatomic  gas, as explained 
i n  reference 1 .  Often it is of interest  to be able  to  predict  the approximate 
magnitude of these  effects, and a  useful  analytic procedure to do t h i s  is to 
assume the flow undergoes a  saturated  equilibrium expansion i n  which the  pres- 
sure and temperature of the two-phase mixture isentropically  follow the vapor- 
pressure curve. Developed  more f u l l y  i n  reference 1 ,  t h i s  analytic procedure 
is only an idealization of actual condensing flow, although it does closely 
approximate the  physical  situation when there  are many preexisting seed parti- 
cles i n  the flow. 

The saturated  equilibrium expansion procedure can be solved  exactly from 
a thermodynamic viewpoint, b u t  it is usually solved  approximately by using 
several thermodynamic assumptions which simplify  the  solution procedure to  a 
large  extent. The simplifying assumptions are  described by Wegener  and  Mack 
i n  reference 1 and include  representing  the gas by the  ideal-gas  equations and 
treating  latent  heat  as  a  constant. These assumptions are very adequate for 
the original  application of the  saturated  equilibrium expansion procedure to 
hypersonic wind tunnels, where the flow usually becomes saturated  at  pressures 
one or two orders of magnitude below 1 atm. A t  low pressures,  these approxi- 
mations model the gas satisfactorily; however, as  pressures  increase,  these 
assumptions w i l l  usually become  more inaccurate. 

A high-pressure application  for  the  saturated  equilibrium expansion prob- 
lem  has arisen w i t h  the developnent of nitrogen-gas,  transonic  cryogenic wind 
tunnels, which typically  operate  at  reservoir  pressures of 5 to 10 atm. 



(See ref. 2. ) Since under sane t e s t  conditions  the flow may  become saturated  at 
pressures of 5 atm or greater, an assessment of the  accuracy of t h e  ideal-gas 
approximations as used i n  the Wegener and Mack (ref. 1) developnent seems pru- 
dent  for t h i s  higher pressure  application. 

Based  on preliminary comparisons between the full  (exact) thermodynamic 
analysis of nitrogen and the Wegener  and  Mack approach, it appears that  the 
l i qu id  mass fraction is the variable most sensitive  to  differences i n  approach. 
Consequently, a simple real-gas  solution is developed and then  manipulated t o  
tes t  the impact on predicted l iqu id  mass fractions of the  various assumptions 
either  singly or i n  combination to  give sane understanding of the  significance 
of the different assumptions that  are involved i n  the Wegener and Mack develop 
ment. A total  of 1 2  approximate formulations  are compared w i t h  the  exact  solu- 
tions  for 3 different  isentropes  intersecting  the  nitrogen vapor-pressure curve 
a t  (120.0 K, 8.81 atm), (88.0 K, 2.99 atm), and (71.2 K, 0.45  atm). O f  course, 
the oomplete set  of assumptions used by Wegener and Mack is  shown as one  of the 
formulations. A particularly  interesting comparison is  found for an approxima- 
tion  that uses a constant two-phase isentropic expansion coefficient. 

The section of t h i s  report  entitled "Exact Models" contains a review of the 
necessary thermodynamics to  derive  the  exact,  real-gas  expression  for mass frac- 
tion of liquid and also  contains  details of the  manipulation of the  exact form 
into  equivalent forms that w i l l  be used to  derive  the approximate expressions i n  
the  section "Approximate  Models." 

SYMJ3OLS 

cP 

E generalized  extensive two-phase property 

heat capacity, J / k g * K  

E 
e specific value of E, - 

m 

g l i qu id  mass fraction, defined i n  equation ( 2 )  

AH latent  heat, J / k g  

h specific  enthalpy, J/kg 

k two-phase isentropic-expansion  coefficient,  defined i n  equation (1 5) 
- 
kF assumed constant  value of k f i t ted  exactly  at  saturated-vapor and 

final  states of an isentropic expansion 

m mass, kg 

P pressure, atm (1 atm = 101.3 kPa) 

R nitrogen  specific gas constant, J/kg*K 
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S spec i f i c   en t ropy ,   J /kg  -K 

T temperature,  K 

V s p e c i f i c  volume, m3/kg 

Subscr ip ts :  

C a t  p o i n t  c, saturated-vapor  s ta te  on an i s e n t r o p e  

F a t  p o i n t  F, cond i t ions  a t  end of expansion 

G a t  p o i n t  G, saturated-vapor  s ta te  

i index of model numbers, 0, 1, 2, . . ., 1 2  

L a t  p o i n t  L, s a t u r a t e d - l i q u i d  s t a t e  

0 a t  p o i n t  0, r e se rvo i r   cond i t ions  

P deno tes   cond i t ions  a t  cons t an t  pressure 

r denotes   re fe rence   condi t ions  a t  a temperature 4 K below 
cond i t ions  a t  c 

S denotes   condi t ions  a t  a cons t an t   en t ropy  

S u p e r s c r i p t s  : 
d 

denotes  - 
dT 

I 

mean value 

EXACT MODEL 

An exac t   so lu t ion ,  or model, f o r   l i q u i d  mass f r a c t i o n  is derived  and m a n i p  
u l a t ed   i n to   s eve ra l   equ iva len t   exac t   fo rms .   Be fo re   t he   exac t  model is der ived ,  
however, a review of the  basic thermodynamics is g i v e n ,   s t a r t i n g   w i t h   t h e  
s k e t c h e s   i n   f i g u r e s  1 and 2. 

Figure  1 i l l u s t r a t e s ,   i n  a T,s   diagram,  an  isentropic   expansion s = sc 
emanating f ran a r e s e r v o i r  a t  To, po located i n   t h e  one-phase  superheat   region.  
The i sen t rope   contac ts   the   boundary  of the  two-phase r eg ion  a t  t h e   p o i n t  c where 
t h e   l i q u i d  mass f r a c t i o n  g is zero.  The expans ion   te rmina tes  a t  t h e   f i n a l  
two-phase state F wi th  0 < gF 1. 

I n   f i g u r e  2, t h e   e n t i r e  twc-phase reg ion  collapses i n t o   t h e   s i n g l e   c u r v e  
p = p(T)  which is t h e   s a t u r a t e d  vapor-pressure curve.   This  is t rue   because  
t h e  two-phase i s o t h e r m s   i n   s , T , p  space are parallel s t r a i g h t   l i n e s  which 
project as p o i n t s   i n   t h e  p,T plane.  Thus, t h e   d i s t i n c t  two-phase p o i n t s  L, F, 
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and G o f   f i gu re  1 project as t h e   s i n g l e   p o i n t  L,F,G of f i g u r e  2. Therefore ,  
t h e   i s e n t r o p e  ocF o f   f i g u r e  1 has  two b r a n c h e s   i n   f i g u r e  2, oc and  cF, 
and  the  two-phase  segment cF coinc ides   wi th   the   vapor-pressure   curve .  

For a two-phase  mixture of mass m a genera l ized ,   ex tens ive-proper ty  
Symbol E may be used for any of the   fo l lawing:   en tha lpy ,   en t ropy ,   in te rna l  
energy,   Gibbs  funct ion,   and  Helmholtz   funct ion.  The r e spec t ive   mix tu re  specific 
va lues  e = E/m are then  obtained  from 

This   equa t ion   g ives  the specific va lue   o f   any   of   the   p rev ious ly  named ex tens ive  
properties a t  any state def ined  by t h e  pair of va lues  g and T, p rov ided   t he  
s a t u r a t i o n   v a l u e s  eL (T) and eG(T) are known a t  each  temperature,  as is 
u s u a l l y   t h e  case. The l i q u i d  mass f r a c t i o n  g is d e f i n e d   f o r   t h e  two-phase 
r eg ion  as 

g = mL/m 

Therefore ,  

0 4 g 4  1 ( 3 )  - 

A s  s e e n   i n   f i g u r e  1 , the   saturated-vapor   curve g = 0 is one  branch of the  
boundary  between  the  one-phase  superheat  region  and  the  two-phase  region. 
S imi l a r ly ,   t he   s a tu ra t ed - l iqu id   cu rve  g = 1 forms the   o ther   b ranch   of  the  
boundary  which separates the  one-phase l i q u i d  region  from  the  two-phase  region. 
The two branches  of  the  boundary  curves are joined  smoothly a t  t he  cr i t ical  
point ,   f rom  which  other  members o f   t he   cons t an t  g cu rves   emana te   i n to   t he  
two-phase  region as ske tched   i n   t he   f i gu re .  A l l  of t he  g = c fami ly   o f  
curves  collapse i n t o   t h e   s i n g l e   v a p o r - p r e s s u r e   c u r v e  p = p (T) of f i g u r e  2. 

In   t he   condens ing   po r t ion   o f   t he   i s en t rope  s = sc, equat ion  (1 )  can be 
used to g i v e   t h e  l i q u i d  mass f r a c t i o n  by s u b s t i t u t i n g  s for e to g ive  

SG - sc 
9 0  = 

SG - ‘L 

where  the subscript 0 denotes   any  one  of   the  equivalent   exact   forms.  The sub- 
script 0 also adds emphasis to t h e   f a c t   t h a t  no assumptions beyond t h e  common 
one of cons t an t   en t ropy  are used i n   t h e   e x a c t  model. 
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A f i r s t  equ iva len t  form is obtained  from  equation ( 4 )  by adding  and  sub- 
t r a c t i n g  sc i n   t h e   d e n o m i n a t o r .   T h i s   r e s u l t s   i n  

Even  though  only  equivalent forms of t h e   e x a c t   l i q u i d  mass f r a c t i o n  are 
d e r i v e d   i n   t h i s   s e c t i o n ,  it is never the less   no ted  a t  t h i s   p o i n t   t h a t  go i n  
equat ion  (5) is now i n  a form i n  w h i c h   t h e   e f f e c t  of t h e   i n t r o d u c t i o n  of an 
ideal-gas entropy  change for the sa tura ted-vapor   en t ropy   d i f fe rence  SG - sc 
is r e a d i l y   s t u d i e d .   I n   t h i s  case sc would  be  obtained  from appropriate 
thermodynamic  tables a t  t h e   a r b i t r a r i l y   f i x e d   s a t u r a t e d - v a p o r  s ta te  c and sL 
would be read as t h e   s a t u r a t e d - l i q u i d   v a l u e  a t  s u c c e s s i v e l y  lower temperatures 
from  the same tables. I n   t h i s  way t h e   e f f e c t   o f   t h e   s i n g l e   a s s u m p t i o n   c o u l d  be 
isolated. 

Addit ional   exact   forms of go are obta ined   th rough  the   use   o f  thermo- 
dynamic i d e n t i t i e s   f o r   t h e  local l a t e n t   h e a t  A H ( T ) .  These are 

where p ' ( T )  is t h e  slope of   the  vapor-pressure  curve a t  temperature T. Equa- 
t i o n  (8) i s  known as the  Clausius-Clapeyron  equation. By e q u a t i n g   t h e   r i g h t  
sides of equa t ions  (7) and (8)  and s u b s t i t u t i n g   f o r  SG - SL i n   e q u a t i o n  ( 4 )  
ano the r   equ iva len t   fo rm  fo r   t he   exac t   l i qu id  mass f r a c t i o n  is given as 

The f i n a l   e q u i v a l e n t  form f o r  go comes from s u b s t i t u t i n g   e q u a t i o n  ( 8 )  
i n t o   e q u a t i o n  ( 9 )  f o r  VG - VL to  g ive  

F o r   n i t r o g e n ,   t h e   r i g h t  sides of a l l  o f   t he   equ iva len t   fo rms  for go 
(eqs. ( 4 )  r (5)? (9)  , and ( I O ) )  can be computed by u s i n g   t h e   s a t u r a t i o n  tables 
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found i n  reference 3. Of course,  similar  tables  are  available  for computing 
these  quanti  ties  for  other gases  as well. 

APPROXIMATE WDELS 

Different approximations can now be substituted  into  the  exact  expressions 
for go to determine what influences the  approximations have  on the  predicted 
mass fraction of condensed liquid. I n  a l l ,  1 2  different approximate expressions 
are derived by using either one or more  of the  following assumptions: (1)  the 
specific volume  of the  liquid is negligible compared to  the  specific volume  of 
the gas, (2) the  entropy of the gas can be approximated by that of an ideal gas, 
( 3 )  the  real gas can  be represented by an ideal-gas  equation of state, ( 4 )  the 
latent heat at  a temperature T can be approximated by a value  equal to  the 
average of the latent heat a t  T and the  latent heat a t  Tc, (5) the two-phase 
isentropic flow can be approximated by a two-phase, constant-valued expansion 
coefficient, and ( 6 )  the  latent heat can  be treated  as  a  constant. 
tions  are summarized i n  table 1 for easy reference. 

TABLE 1 .- BASIC ASSUMPTIONS 

Number 

1 

2 

3 

4 

5 

6 

Assumption 

AH = Constant 

The  assump- 

The liquid mass fractions g calculated wi th  these assumptions are  desig- 
nated by subscripts 1 to 12. The value of specific heat at  constant  pressure 
Cp used i n  the calculations is equal to the  zero-pressure  value of 1039 J /kg 'K 
unless  otherwise noted. The impact on the calculations  for l iqu id  mass fraction 
of us ing  the  value of Cp corresponding to  finite  pressure and  low temperature 
is discussed i n  the appendix. 

One-Assumption  Models 

For the one-assumption  models the subscript of g corresponds to the 
numbered assumptions from table 1.  Thus, the f i r s t  one-assumption model for 
the l iqu id  mass fraction is 
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and is ob ta ined  by using  assumption 1 with   equat ion  ( 9 ) .  After  the  approxima- 
t i o n  is made, a l l  of t h e   q u a n t i t i e s   i n   t h e   r i g h t  side are obtained  f rom  the 
vapor -p res su re   equa t ion   and   t he   s a tu ra t ion   t ab l e s   o f   r e f e rence  3. This  proce- 
d u r e  w i l l  apply  uniformly to all subsequent  approximations also. 

When assumption  2 is a p p l i e d  to equa t ion  ( S ) ,  t h e   r e s u l t  is 

T P 

TC PC 
CP I n  - - R I n  - 

- cp I n  - - R l n  -- + sc - sL 
TC PC 

Assumption  3  applied to  equa t ion  (9)  g i v e s  

SG - sc 

I n   t h e   n e x t  model t h e  local l a t e n t   h e a t  AH(TL i n   e q u a t i o n  (1 0) is arbi- 
t r a r i l y   r e p l a c e d  by its local arithmetic average A H ( T , T ~ )  to e s t a b l i s h  a 
degree of s e n s i t i v i t y  to  l a t en t   hea t   ( a s sumpt ion  4 )  on a one-assumption  level 
be fo re   encoun te r ing   subsequen t   i n t eg ra l   s i t ua t ions   fo r  which the  approximations 
require some form  of  averaging.  Thus,  equation ( 1 0 )  is simply  replaced by 

The l a s t  one-assumption model to be considered assumes a c o n s t a n t  
i s en t rop ic -expans ion   coe f f i c i en t  k. Although t h i s  model does n o t   e n t e r   t h e  
developnent   of   the  Wegener  and Mack ( r e f .  1 )  procedure, it does p r e s e n t  a 
simple a l t e r n a t e  way to approach   s impl i fy ing   the   express ions  for l i q u i d  mass 
f r a c t i o n .  From t h e   g e n e r a l   d e f i n i t i o n   o f  k, 



Those  thermodynamic states on an i s en t rope   can  be r ep resen ted  by t h e   d i f f e r e n -  
t i a l  form 

where k is v a r i a b l e .  For some mean value k, i n t e g r a t i o n  between  pc,vc  and 
t h e  local coord ina te s   p ,v   g ives  

- 

1 /k 
v = ..(") 

or 

I n  - 
VC 

V 

which  shows t h a t  k is a local average  which  can  vary as p and v vary 
on   the   i sen t rope .  For a closed i n t e r v a l  on the   i s en t rope   w i th   end  states 
of c and F, equa t ion  (1 8) y i e l d s  a value  of  k, now des igna ted  as kF, 
equa l  to 

- 
- - 

For small v a r i a t i o n s   i n  k, t h e  local average k i n   e q u a t i o n  (1 7) is replaced 
by EF and  consequent ly   gives  an approximation for t h e   i s e n t r o p e   i n   t h e   p , v  
plane as 

- 
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This  w i l l  s a t i s f y   t h e  end states pc,vc  and &,VF exac t ly .  After state c 
is s p e c i f i e d  by s e l e c t i n g  Tc, s tate F is obta ined  as fo l lows .   Subs t i t u t ion  
of v for e i n   e q u a t i o n   ( 1 )   r e s u l t s   i n  

which  holds  for  any  two-phase s ta te .  El iminat ion  of  g between t h i s   e q u a t i o n  
and equat ion ( 4 )  g i v e s   t h e   s p e c i f i c  volume on   t he   i s en t rope  as 

SG - sc 

I n   t h i s   e q u a t i o n  sc is the   en t ropy  of t h e  saturated vapor  which is f ixed  by 
t h e   s e l e c t i o n  of Tc. A l l  of the   remain ing   quant i t ies  are s a t u r a t i o n   q u a n t i t i e s  
which  can  be treated as func t ions   o f  temperature; hence 

where  equation  (23) is eva lua ted  a t  TF. The d e f i n i t i o n   o f  k F  i n  equa- 
t i o n  (1 9) is completed by t ak ing  p~ as the  pressure on  the  vapor-pressure 
curve a t  TF. 

- 

Afte r   e l imina t ing  v from  equations  (20) and  (21 ), t h e   r e s u l t  i s  
rearranged t o  give  the  approximate model f o r   t h e   l i q u i d  mass f r a c t i o n  as 

I n   t h i s   e q u a t i o n  vg,  vL,  and p are read f r a n   t h e  thermodynamic t a b l e s  a t  
any  temperature.  

Two-Assumption Models 

The  two-assumption models are der ived by adding  an  additional  assumption 
to sane of  the  one-assumption models. With more than  one  assumption  occurring 
wi th in  a model, it is no  longer   possible  to h a v e   t h e   s u b s c r i p t  on g simulta- 
neous ly   i den t i fy   bo th   t he  model number and the  assumption number.  Hence, t he  
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n o t a t i o n  is extended by w r i t i n g   t h e  assumption numbers i n   p a r e n t h e s e s  after 
gir  where i is t h e  model number.  Imposing the   add i t iona l   a s sumpt ion  3 on 
equat ion  (1 1 )  g ives  

That is, the  two-assumption model 96 is cons t ruc t ed  by using  assumptions 1 
and 3 f r a n  table 1. When assumption 2 is inco rpora t ed   i n to   equa t ion  (1 1 ), t h e  
r e s u l t  is 

Equation (13) with  assumption 2 is 

T P 

TC PC 
CP I n  - - R I n  - 

E - VL)Pf 

F i n a l l y ,  the combination  of  assumption 2 and  equat ion (1 4) y i e l d s  

Multiple-Assumption Models 

A three-assumption model is obta ined  when assumption 3 is added to equa- 
t ion   (26)  to  g ive  
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The same r e s u l t   c a n  be ob ta ined  by  adding  assumption 2 to equat ion  (25), or by 
adding  assumption 1 to equa t ion  (27). A t  t h i s  p o i n t  it is again  noted t h a t  t h e  
r i g h t  sides of a l l  g i  for i = 0, 1 ,  . . ., 10 are computed  from  Jambsen's 
tables of  thermodynamic properties ( r e f .  3). This  means t h a t  p and p' are 
t h e   a c t u a l   v a l u e s  of the   p re s su re   and  its d e r i v a t i v e   a l o n g  the  vapor-pressure 
curve. A new approximation is now incorpora ted  for the   vapor-pressure   curve  
t h a t   n e c e s s i t a t e s   t h e   i n t r o d u c t i o n  of t h e  local a v e r a g e   l a t e n t   h e a t   i n  a formal  
way i n ,   c o n t r a s t  to t h e   a r b i t r a r y  manner i n  which it was previously  used.  From 
equat ion  (8 )  and  assumptions  1  and 3, 

Next ,   t he  law of t h e  mean can be used when i n t e g r a t i n g   t h e   r i g h t  side of  equa- 
t ion   (30)  to remove a n   e x a c t  mean v a l u e   o f   l a t e n t   h e a t  < A H ( T ) >  from the  i n t e -  
gral. Th i s  mean va lue   can   then  be approximated  by AH(T,Tc) of  assumption 4. 
Consequently,  by approximating t h i s  mean va lue   wi th   assumpt ion  4, i n t e g r a t i o n   o f  
equat ion  (30) r e s u l t s   i n  

- 

The local a v e r a g e   l a t e n t   h e a t  w i l l  aga in  be referred to as assumption 4. 
Therefore  , 

where AH (T) is t h e   a c t u a l  local va lue  of l a t e n t   h e a t   a n d  E (T,Tc) is def ined  
by  assumption 4. 

Fina l ly ,   i nco rpora t ing   a s sumpt ion  6 i n t o   e q u a t i o n  (32) , 110 d i s t i n c t i o n  
is made i n   t h e   v a r i o u s   l a t e n t   h e a t s .   T h a t  is, o n l y   o n e   v a l u e   o f   l a t e n t  heat, 

AH - A H ( T )  - ~ ( T , T ~ )  (33) 
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is used.  With th i s ,   equa t ion   (32)   reduces  to equation  (4.60) of r e fe rence   1 ,  
which  has   been  previously  referred to as the  Wegener and Mack model. Therefore,  

CpT T T 
912 = l n  - + (1 - ---) 

TC 
(34) 

I n   r e f e r e n c e  1, t h i s   has   been   de r ived   f rom a f lu id   mechan ics   app roach   r a the r  
than  the  thermodynamics  approach  used  here. The present  approach  emphasizes 
t h e   f a c t   t h a t   t h e   l i q u i d - m a s s - f r a c t i o n   c a l c u l a t i o n   c a n  be decoupled  from  the 
f l u i d  mechanics. The thermodynamic state, which includes  g ,  is t h e  same a t  
some temperature T (less than  Tc) f o r  two d i f f e r e n t   s u p e r h e a t - r e s e r v o i r  
cho ices  on t h e  same i sen t rope   even   t hough   t he   ve loc i t i e s  a t  temperature T 
are d i f f e r e n t   f o r   t h e  two choices .  

It  is i n t e r e s t i n g  to n o t e   t h a t   e q u a t i o n  (34)  uses t h e  maximum number of 
assumptions  and  minimizes  dependence  on tables of thermodynamic properties. 
For example, Cp was normally  taken to  be the   i dea l -gas   va lue  of 1039 J/kg*K 
and, a f t e r   a r b i t r a r i l y   s e l e c t i n g  Tc and TF, l a t e n t   h e a t  was taken to be 

1 

2 
AH = - [ A H ( T ~ )  + AH(T,)I (35) 

and calculated f r o m  t h e  tables i n   r e f e r e n c e  3. Once t h e s e  numbers are i n s e r t e d  
i n t o   e q u a t i o n   ( 3 4 ) ,  912 becomes a n   e x p l i c i t ,  simple funct ion  of   temperature .  

RESULTS AND DISCUSSION 

The computat ional  results f o r   t h e   l i q u i d  mass f r a c t i o n s   a s s o c i a t e d   w i t h  
t h r e e   s a t u r a t e d  equilibrium expans ions   fo r   n i t rogen  are shown i n   f i g u r e s  3 
to  11 . Figures  3 to 5 refer to  an   i sen t ropic   expans ion  from Tc = 102.0 K 
and pc = 8.81 atm t o  TF = 94.8 K and p~ = 5.26 atm. The next   expansion 
is shown i n   f i g u r e s  6 to 8 wi th  Tc = 88.0 K, pc = 2.99 atm, TF = 80.8 K, 
and PF = 1.47 atm. The f i n a l   e x p a n s i o n  corresponds t o  f i g u r e s  9 t o  11 wi th  
Tc = 71.2 K, pc = 0.45 atm, TF = 64.0 K, and @I = 0.14 atm. For reference ,  
t h e  cr i t ical  and t r i p l e - p o i n t  temperatures are 126.2 K and 63.1 K, r e spec t ive ly .  
For any  one  expansion,   each  f igure  contains   the  zero-assumption model plotted 
as go- I n   a d d i t i o n ,   t h e  first f igure in   each   expans ion  shows t h e  plots of 
the  one-assumption models; the   second  f igure  shows the  two-assumption models; 
and  the t h i r d  f i g u r e  shows the  mult iple-assumption models. 

For f i g u r e s  3 to 11 a l l  o f   t he   cu rves   i n t e r sec t  a t  t h e   p o i n t  T = Tc 
and g = 0, and genera l ly   they   form an approx ima te ly   l i nea r   penc i l  of curves  
emanating  from  the  point  of  intersection.  With  the  exception of the  kF 
curve (model 5 ) ,   t he   cu rves  do not  i n t e r s e c t   a f t e r   t h e  common (Tc, 0)  point,   and 
l ike-numbered  curves  maintain  the same r e l a t i v e   p o s i t i o n   f o r   e a c h   o f   t h e   t h r e e  

- 
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isentropic expansions. The overall wid th  of the pencil  fan measured a t  the 
respective TF values is broadest  for  the high-temperature and high-pressure 
expansion, decreases  for  the midrange temperature and pressure expansion, and 
is the narrowest for  the low-temperature and low-pressure  expansion. The 
decreasing fan width associated w i t h  decreasing Tc values  reflects the  general 
fact  that  the imposed assumptions 1, 2, 3, 4, and 6 are   a l l  more accurate a t  low 
temperat2res and pressures away  from the critical  point. The exception to  t h i s  
is the kF curve (assumption 5) ,  which has its poorest performance i n  the low- 
temperature expansion and its best performance i n  the middle-temperature expan- 
sion. (Assumption 5 is developed as an approximation of real-gas thermodynamics 
i n  contrast  to  the  other assumptions that  are  generally of an ideal-gas, or 
zero-pressure,  nature. ) 

The percent  deviations of the predicted  values of g from the  exact model 
are  presented i n  table 2 for each approximate model.  The reference  temperature 

TABLE 2. - PERCENT DEVIATIONS OF APPROXIMATE LIQUID MASS 

FRACTIONS g i  FROM EXACT L I Q U I D  MASS FRACTION go 

" . ~ .- 

Model 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10  
11 
12  

"_ ." 

_____~."___ 

98.0  K 
. .. ~~~~ ~- 

-4.49  (3) 
-35.09  (3)  
-17 .15(3)  

2.64  (3) 
1 . 8 5 ( 3 )  

-1 9 .79 (4 )  
-38 .79(4)  
-46 .97   (4 )  
-34.30 ( 4 )  
-48.81  (5)  
-64 .38   (5 )  
-62.27  (5)  

. .  - 

84.0 K 

-1 .48(6)  
-16 .02(6)  

-7 .42 (6 )  
1 . 7 8 ( 6 )  
- . 30 (6 )  

-8 .31  (7)  
-17 .80(7)  
-22.85  (7)  
-15 .13(7)  
-23 .44   (8 )  
-30.86 (8 )  
-29 .08 (8 )  

" __ 

67 .2  K 
~~ 

O.OO(9) 
-3 .82   (9 )  
-1 .53(9)  

1 . 2 7 ( 9 )  
-4 .33   (9 )  
-1 .53  (1 0) 
-4 .07(10)  
-5 .60(10)  
-2 .80(10)  
-5 .60(11)  
-7 .38(11)  
-5 .85(11)  

.~ 

aNumbers i n  parentheses  refer  to  figure numbers. 

Tr for each of the  isentropes is 4 K below the  value of Tc. The reason for 
choosing a  temperature  located approximately halfway between Tc and TF for 
any run is that  the kF curve is constructed  to produce no deviation  at  the 
end states. Its maximum error occurs a t  sane  temperature between Tc and TF, 
which is roughly approximated by Tr. There are  three  values of Tr l i s ted i n  
table 2, one for each se t  of values for Tc and TF. The percent  deviation is 
defined  as 1 OO(gi - go)/go. For quick reference  to  the  curves,  the model num- 
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ber is given i n  the f i r s t  column and the  appropriate  figure number is given i n  
parentheses after the  deviation. 

The performance of the  different assumptions is indicated i n  table 2. 
As expected, their performance a t  the  high-pressure expansion (ar = 98.0 K) is 
generally  the  poorest. Of the one-assumption  models  (models 1 to 5 )  the worst 
performance is by  model 2 and the  next to  the worst is by  model 3. Model 2 
is. the assumption that the  entropy of gaseous nitrogen can be represented by 
an ideal-gas model  and  model 3 is the assumption that gaseous nitrogen can 
be represented by an ideal equation of state. Of the two-assumption  models 
(models 6 to 9), a l l  incorporate  the  entropy assumption and show poor  perform- 
ance. The poorest of these, model 8, incorporates both the  entropy and the 
ideal equation of s ta te  assumptions. Of  the multiple-assumption models, a l l  
perform poorly and a l l  incorporate  the  ideal form  of the  entropy assumption. 
The entropy assumption seems to  consistently be  an inaccurate assumption that 
leads  to  errors, and the  reasons  for its inaccuracies  are  discussed i n  the 
appendix . 

With the  exception of  model 5, the performance of the models  improves 
markedly a t  the lower temperature and pressure expansions. Model 12, which 
corresponds to the assumptions i n  the Wegener  and  Mack procedure (ref. l), 
departs from the  exact model go by about -62, -29, and -6 percent  for  the 
expansions s tar t ing  a t  8.81, 2.99, and 0.45 atm, respectively. A t  the lowest- 
pressure  case model 12 does satisfactorily, which is good performance consid- 
ering its original  application was for much lower pressures  for which agreement 
would  be  even better. I t  is recomended that model 72 not be used  i n  cryogenic- 
nitrogen wind tunnels i f  saturation is expected a t  pressures over 0.5 atm  and 
accuracy is required. 

For application  to  other  test gases it is recommended to  repeat  the proce- 
dure described  herein  to examine the  various assumptions and their performance i n  
predicting  liquid mass fractions. An additional concern w i t h  other  test gases 
is that the liquid mass fraction may not necessarily be the most sensitive d i f -  
ference between  an exact  solution and a procedure such as  that of Wegener  and 
Mack. For example, differences i n  liquid mass fraction may  be less than dif- 
ferences i n  s t a t i c  pressure or temperature ra t ios   a t  a given Mach  number i n  
other  gases. Thus, the  sensitivity  to  liquid mass fraction should be verified 
before  relying  solely on the  liquid mass fraction  test   to determine whether or 
not the  ideal approximations of Wegener  and  Mack can adequately  describe  the 
saturated  equilibrium expansion problem. 

CONCLUSIONS 

The isentropic two-phase saturated  equilibrium expansion problem is usually 
solved by us ing  several  simplifying approximations dealing w i t h  either  ideal-gas 
of latent-heat assumptions, as i n  the  formulation of  Wegener  and  Mack (ref. 1 ) . 
These assumptions are intended  for low-pressure applications and begin to break 
down for  the  prediction of l iquid mass fraction  as t h e  pressure a t  which the 
isentrope meets the  vapor-pressure curve increases. For intersection  pressures 
of 0.45, 2.99, and 8.81 atm i n  nitrogen,  the  differences between the  exact, 
real-gas  value of liquid mass fraction and the  value  predicted by the Wegener 
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and Mack formulation  are,  respectively, about -6,  -29, and -62 percent. The 
assumption i n  the Wegener and Mack formulation  that  appears  to  generate  the 
largest  deviations  for  nitrogen is that of assuming t h e  ideal-gas form for 
entropy of the gas phase. For nitrogen gas it is recommended that  the Wegener 
and  Mack formulation  for  solving  saturated  equilibrium expansions be restricted 
to  pressures  less than 0.5 atm.  For pressures  greater than 0.5 atm, either a 
f u l l  real-gas analysis or a procedure such as  that w i t h  a c o n s t a n t  isentropic- 
expansion coefficient should be used. 

Langley Research Center 
National  Aeronautics and Space Administration 
Hampton, VA 23665 
April 23, 1 980 
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APPENDIX 

DISCUSSION OF THE IDEXL-GAS ENTROPY 

ASSUMPTION FOR NITROGEN 

Attention was f i rs t   d i rected  to  the assumption of the  ideal-gas form  of 
entropy after an attempt was  made to  improve the agreement between the  multiple- 
assumption models  (numbers 1 0 to 1 2) and the  exact model  go for  the high- 
pressure example  shown i n  figure 5. Since a l l  the calculations used i n  the 
approximate models i n  table 2 and figures 3 to 1 1  used the  zero-pressure, ideal 
value of Cp (1039 J/kg-K), it was thought that using an average of the actual 
values of C along the expansion would lead  to  better agreement between go 
and  models l!, 1 1  , and 12. A s  seen i n  figure 12, t h i s  d id  not  occur. The 
agreement is noticeably worse wi th  the more accurate  value of Cp than w i t h  the 
zero-pressure  value used i n  figure 5. A s  i t  has turned  out, the problem is not 
j u s t  w i t h  Cp but wi th  the  entire  ideal-gas approximation for SG,F - sc. ( I n  
t h i s  appendix the  notation SG,F is used to  denote the  saturated-vapor  entropy 
at  the temperature TF = 94.8 K. The use of the  single  subscript G is  
retained  for  variable  saturated-vapor  states. ) 

Consider the  following methods for  calculating  the saturated-vapor  entropy 
difference SG,F - sc for  the high-temperature expansion fran Tc = 102.0 K to 
TF = 94.8 K. Since both states i n  the  entropy  difference  are  single-phase gas 
states, the general  expression  for ds can be written without any assumptions 
as 

Integration from c to  the saturated-vapor s ta te   a t  TF along the  saturated- 
vapor curve gives 

Equation (37) is exact when the bracketed terms represent  the value of the 
terms fran  the mean-value integral theorem  of calculus. An arbitrary approxima- 
tion or averaging for the  bracketed terms can lead  to  deviations i n  the result- 
ing  entropy calculations.  Several methods  of  computing the  entropy  difference, 
including  the  exact method, are now util ized  to  i l lustrate  the  effect  of various 
approximations. 

First ,  by assuming the  ideal-gas  equation of s ta te  pv = RT, then 
p(av/aT)p,G = R. Substitution  into equation (37) results i n  

16 



APPENDIX 

This   form still  l eaves   open   t he  manner of  approximating -CCy ,~> .  O r d i n a r i l y   t h e  
zero-pressure  value  of  C p , ~  is inco rpora t ed   w i th   t he  idea -gas   concept .   This  
va lue   va r i e s   s lowly   i n   t he   p re sen t   t empera tu re   r ange   w i th   an   exce l l en t   app rox-  
imation  given by t he   va lue   o f  1039 J/kg*K,  which is the   va lue   u sed   i n  f ig-  
u r e s  3 to 11. The arithmetic mean of  C G a t  sa tu ra t ed   p re s su res ,   g iven  by 
[ C p , ~  (Tc) + C G (TF) ]/2, has  the  value 1% 8 J/kg*K  and is used i n   t h e   c u r v e s  of 
f i g u r e  12. Tgse f i g u r e s   i n d i c a t e   t h a t   b o t h   t h e  ideal and  arithmetic-mean 
va lues  of C K , ~  i n   con junc t ion   w i th   equa t ions  (38) and (5) underes t ima te   t he  
l i q u i d  mass r a c t i o n   w i t h   t h e  arithmetic mean o f   t h e   a c t u a l   v a l u e s  a t  pres- 
su re ,   g iv ing  worse r e s u l t s .   S p e c i f i c a l l y   i n  terms of   en t ropy   d i f f e rences ,   t he  
e x a c t   s o l u t i o n  calculates SG,F - sc as equa l  to 1 1  5.8 J/kg*K f o r   t h e   h i g h -  
temperature expansion,  equation (38) w i t h   t h e  ideal va lues  of Cp,G c a l c u l a t e s  
SG,F - sc as 77.1 J / k g * K  and  equation (38) with  the  ar i thmetic-mean  values  of 
Cp c a l c u l a t e s  SG,F - sC as 49.3 J/kg'K. 

Consequent ly ,   cor rec t ing  C p , ~  to  a mpre accura t e   va lue   i n   equa t ion  (38) 
leads to worse agreement  and t h i s  draws a t t e n t i o n  b a c k  to equat ions  (37) and 
(38). I n   g o i n g   f r m   e q u a t i o n  (37) to equat ion  (38), t h e   s u b s t i t u t i o n   i n v o l v e d  
assumes an ideal-gas equat ion  of  s t a t e  to  ca lcu la te   p (av /aT)p ,G = R, where 
R = 296.8 J/kg'K. T h i s  s u b s t i t u t i o n   a c t u a l l y   r e p r e s e n t s  a l a r g e   s o u r c e   o f  error 
because the  ari thmetic-mean  value of p(av/aT) ,G eva lua ted  a t  the   end   po in t s  
of the  high-temperature   expansion is a c t u a l l y  $31.2 J/kg-K. I n   f a c t ,  calculat- 
i n g  SG F - sc from  equation (37) with  the  ar i thmetic-mean  values  of both C G 
and  p(av/aT) ,G leads to a good va lue  of 1 1  8.6 J/kg*K compared to  t h e  actua!? 
value  of  1 1  5.1 J/kg*K,  and  would lead to  exce l len t   agreement   for   the  predicted 
values   of  l i q u i d  mass f r a c t i o n .  

From t h i s   a n a l y s i s ,   b o t h  bracketed terms i n   e q u a t i o n  (37) are very  impor- 
t a n t .   I n   f a c t  i t  is t h e  p (av/aT)p,G term t h a t  makes t h e  ideal-gas en t ropy  
e q u a t i o n   i n a c c u r a t e   i n   r e p r e s e n t i n g   r e a l - n i t r o g e n   v a l u e s  of entropy.   This  
inaccuracy  appears to be the   p r imary   reason  why t h e   e q u a t i o n s   i n   t h e   a n a l y s e s  
f o r   l i q u i d  m a s s  f r a c t i o n   u s i n g   t h e  ideal express ion   for   en t ropy  d i d  so poorly.  
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